Photoautotrophic Cultivation of the Green Alga Chlamydomonas reinhardtii as a Method for Carbon Dioxide Fixation and α -Linolenic Acid Production

Masamichi Akimoto*, Hidenao Yamada, Kazuhisa Ohtaguchi, and Kozo Koide

Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo 152, Japan

ABSTRACT: Focusing on CO_2 fixation and α-linolenic acid (ALA) production, photoautotrophic cultivation of the green alga *Chlamydomonas reinhardtii* was investigated by using a culture medium of pH 6.8 under a 5 vol% CO_2 -enriched atmosphere. The optimum cultivation temperature and light intensity for growth were 25°C and 12 klux, respectively. The cellular ALA content nearly doubled to 11.9 mg/g of dry cells when the concentration of culture medium was doubled. Simulation of chemostat cultivation showed that the rate of CO_2 fixation and ALA productivity per unit volume of culture medium could reach 1.01 kg $CO_2/(m^3 \cdot d)$ and 7.46 g ALA/ $(m^3 \cdot d)$, respectively, at a cell concentration of 0.57 kg cells/ m^3 . *JAOCS 74*, 181–183 (1997).

KEY WORDS: Alga, α -linolenic acid, anti-tumor agent, carbon dioxide, *Chlamydomonas reinhardtii*, unsaturated fatty acid.

Because large-scale cultivation of photoautotrophic microalgae is relatively simple and cheap, it is an adequate method for the fixation of CO_2 . Recently, this kind of microalgae has been examined as a source of valuable fine chemicals as well (1). The green alga *Chlamydomonas reinhardtii* has a high growth rate and accumulates a high level of α -linolenic acid (18:3 ω -3, ALA) (2,3). This unsaturated fatty acid is essential for mammals and has antitumor activities and antiallergic activities as well (4,5). In the present paper, we determined the activity for CO_2 fixation and ALA productivity for C. reinhardtii (strain C-9) under optimum cultivation conditions.

MATERIALS AND METHODS

Chlamydomonas reinhardtii C-9 was supplied from the Microbial and Microalgal Research Center, Institute of Applied Microbiology, University of Tokyo (Tokyo, Japan). The organism was originally isolated in a potato field in Amherst, Massachusetts in 1945, by G.M. Smith and is equivalent to

the Sager strain (6). Cells were grown axenically for 7 d at 15–35°C in a 1-L shaking flask (500 mL of culture medium) with reciprocal shaking at 110 strokes/min. The flask was aerated with 5 vol% CO₂-enriched air (100 mL/min) and illuminated by cool-white fluorescent lamps at 3–12 klux (1 klux = 92.9 ft-c). Light intensity was measured at the upper surface of the shaking flask. Growth was monitored turbidimetrically at 750 nm (o.d. $_{750}$) (2). A buffered culture medium of pH 6.8, based on Beijerinck's four-salt solution, was used (2). The alga was inoculated at the fixed concentration of o.d. $_{750} = 0.10$ after being precultured at 25°C and 4 klux. Harvesting and drying of cells were carried out as described previously (7). Dried cells were heated at 95°C for 3 h in methanolic HCl, and fatty acid methyl esters formed were extracted with *n*-hexane. Fatty acid content was then determined by the analysis of these methyl esters by gas-liquid chromatography (7).

RESULTS AND DISCUSSION

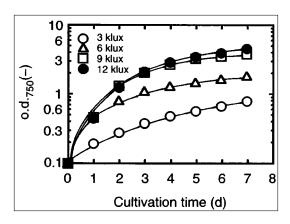
Cultivation temperature. Chlamydomonas reinhardtii accumulated exclusively C_{16} - and C_{18} -fatty acids. Palmitic acid $C_{16:0}$, oleic acid $C_{18:1}$, linoleic acid $C_{18:2}$, and ALA $C_{18:3}$ were the main cellular fatty acids. The growth rate constant μ in the first one day of cultivation at 6 klux was 0.79 d^{-1} at 15°C, which was calculated by use of Equation 1:

$$dX/dt = \mu X$$
 [1]

where *X* and *t* are cell concentration (kg cells/m³) and cultivation time (*d*), respectively. With rising cultivation temperature, however, the growth rate constant increased ($\mu = 1.31~d^{-1}$ at 20°C) and became maximum at 25°C ($\mu = 1.50~d^{-1}$). With further rise in cultivation temperature, the growth rate constant rather decreased ($\mu = 1.39~d^{-1}$ at 30°C, 1.23 d^{-1} at 35°C). Table 1 summarizes the results of cultivation at 6 klux at these different temperatures. Cell yield was maximum (1.11 g/L) at 25°C, although no big difference in cell yield was observed at these cultivation temperatures. Cellular α -linolenic acid (ALA) content was greatest at the lowest temperature studied (15°C) and decreased with rising cultivation temperature. For example, cellular ALA content was as high as 26.7 mg/g at 15°C, but it was 6.0 mg/g at 35°C.

^{*}To whom correspondence should be addressed at the present address: Department of Applied Chemistry and Biotechnology, Niigata Institute of Technology, 1719 Fujihashi, Kashiwazaki, Niigata 945-11, Japan.

Table 1
ALA Yields and Cellular Fatty Acid Compositions of *Chlamydomonas reinhardtii* Grown at Different Temperatures^a


Cultivation temperature	Cell yield	Total fatty acid content	ALA content	ALA yield	Cellular fatty acid composition (wt%)				
(°C)	$(g/L)^b$	(mg/g) ^c	$(mg/g)^{c}$	$(mg/L)^b$	16:0	18:1	18:2	ALA	Others ^d
15	0.90	72.0	26.7	24.0	16.8	25.5	2.4	37.1	17.2
20	0.96	72.1	21.8	20.9	20.1	26.9	3.3	30.3	19.4
25	1.11	77.4	16.1	17.9	18.4	19.0	13.9	20.8	28.0
30	1.06	81.1	9.8	10.4	16.9	20.1	16.9	12.0	34.4
35	0.97	84.1	6.0	5.8	18.0	26.1	10.1	7.2	38.6

^aCultivated at 6 klux for 7 d; ALA, α-linolenic acid.

Light intensity. Figure 1 shows growth curves for *C. reinhardtii* at 25°C at different light intensities. Judging from these growth curves, the growth rate increased drastically with rising light intensity from 3 to 9 klux. When it was further raised from 9 to 12 klux, however, the growth rate scarcely increased, especially in the first 3 d of cultivation. When cultivation was carried out at 12 klux in a culture medium in which the concentration was doubled, a growth curve identical to that at 9 klux in the single-strength culture medium was obtained.

Cell yield increased with increasing light intensity and reached 2.64 g/L at 12 klux (Table 2). Cellular ALA content decreased to as low as 6.3 mg/g at 12 klux. However, the ALA content doubled at 12 klux in the double-strength culture medium (11.9 mg/g, Table 2). Separate experiments, in which the concentrations of trace metals, ZnSO₄, NH₄NO₃ or all salts other than trace metals that constitute the culture medium were doubled, revealed that the rise in cellular ALA content was caused by the increase in NH₄NO₃ concentration. ALA yield was maximum (24.8 mg/L) at 12 klux in the double-strength culture medium.

Calculation of CO_2 fixation rate and ALA productivity. These two algal activities under optimum cultivation conditions (25°C, 12 klux and double-strength culture medium) were evaluated by assuming a chemostat cultivation at o.d.₇₅₀ = 1 (0.57 kg cells/m³). The following two equations were used for calculations:

FIG. 1. Growth curves for *Chlamydomonas reinhardtii* at 25°C at different light intensities.

rate of algal cell production [kg cells/(m³ · d)] =
$$dX/dt = \mu X$$
 [2]

rate of CO₂ fixation[kg- CO₂/(m³ · d)] =
$$(44/12) \times (C_c/100) \times \mu X[3]$$

where μ and C_c are growth rate constant $[d^{-1}]$ and carbon content of dry cells (43.9 wt%), respectively. The growth rate constant μ at o.d.₇₅₀ = 1 was determined to be 1.10 d^{-1} by graphical differentiation of the growth curve that was obtained under optimum cultivation conditions. Thus, the rates

Table 2
ALA Yields and Cellular Fatty Acid Compositions of *C. reinhardtii* Grown at Different Light Intensities^a

Light	Total fatty					Cellular fatty acid					
intensity	Cell yield	acid content	ALA content	ALA yield	composition (wt%)						
(klux)	(g/L)	(mg/g)	(mg/g)	(mg/L)	16:0	18:1	18:2	ALA	Others		
3	0.38	57.0	14.2	5.4	17.9	26.4	4.4	25.0	26.4		
6	1.11	77.4	16.1	17.9	18.4	19.0	13.9	20.8	28.0		
9	2.23	76.4	9.3	20.7	28.9	21.6	16.4	12.2	21.1		
12	2.64	61.9	6.3	16.6	31.4	21.8	18.2	10.1	18.6		
12 ^b	2.08	57.6	11.9	24.8	18.3	19.8	13.0	20.7	27.3		

^aCultivated at 25°C for 7 d. See Table 1 for abbreviations.

^bPer one liter of culture medium.

^cPer one gram of dry cells.

 $^{^{}d}$ 14:0 + 16:1 + 16:2 + 16:3 + 16:4 + 18:0 + 18:3 ω -6 + 18:4.

^bCulture medium concentration was doubled.

of algal cell production and of CO_2 fixation were calculated to be 0.63 kg cells/(m³ · d) and 1.01 kg CO_2 /(m³ · d), respectively. Because cellular ALA content was 11.9 mg/g, ALA productivity was 7.46 g ALA/(m³ · d). This rate of CO_2 fixation for *C. reinhardtii* is greater than that for the blue-green alga *Anacystis nidulans* [0.96 kg CO_2 /(m³ · d)] and the hotspring alga *Cyanidium caldarium* [0.72 kg CO_2 /(m³ · d)] (7,8). The ALA productivity of *C. reinhardtii* is greater than that of *C. caldarium* [5.22 g ALA/(m³ · d)] (7) as well.

REFERENCES

- Borowitzka, M.A., Micro-Algae as Sources of Fine Chemicals, *Microbiol. Sci.* 3:372–375 (1986).
- 2. Sager, R., and S. Granick, Nutritional Studies with *Chlamy-domonas reinhardtii*, *Ann. NY Acad. Sci.* 56:831–838 (1953).
- 3. Erwin, J., and K. Bloch, Polyunsaturated Fatty Acids in Some Photosynthetic Microorganisms, *Biochem. Z. 338*:496–511 (1963).

- Noguchi, Y., Physiological Functions of α-Linolenic Acid and Egoma (*Perilla frutescens* Britton var. *japonica* Hara) Oil, *Yushi* (Oils and Fats) 43:44–49 (1990).
- Isoda, Y., and Y. Nishizawa, On the Pharmaceutical Ability of n-3 Series Fatty Acids and Egoma (*Perilla frutescens* Britton var. *japonica* Hara) Oil, *Ibid.* 44:49–54 (1991).
- Harris, E.H., Origins of the Major Laboratory Strains of Chlamydomonas, in The Chlamydomonas Sourcebook, Academic Press, New York, 1988, pp. 14–22.
- Akimoto, M., T. Ohara, K. Ohtaguchi, and K. Koide, Carbon Dioxide Fixation and α-Linolenic Acid Production by the Hot-Spring Alga *Cyanidium caldarium*, *J Chem. Eng. Japan* 27:329–333 (1994).
- 8. Suzuki, T., K. Nishimura, K. Ohtaguchi, and K. Koide, Chemometric Approach to the Analysis of a Synergism of Temperature, Light Intensity and Carbon Dioxide Concentration on the Growth of *Anacystis nidulans*, *Ibid.* 24:563–568 (1991).

[Received January 29, 1996; accepted September 17, 1996]